

Fig. 1. Arrangement of the atoms viewed along \mathbf{a} and \mathbf{b}.
(Mikhail \& Peters, 1979), and has a long period of $c=$ $3 c_{o}$ compared with the structure of the normal phase as in $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$. It is worth noting, however, that there is a marked difference between $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$ and $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$ in the distribution of satellite reflexions based on the structure of the normal phase. In $\left(\mathrm{NH}_{4}\right)_{2}-$ [$\left.\mathrm{ZnCl}_{4}\right]$ many satellite reflexions are observed in the (0 kl) plane, whereas they are hardly found in the same plane in $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$ (Itoh, Kataoka, Matsunaga \& Nakamura, 1980).

The bond lengths of $\mathrm{Zn}-\mathrm{Cl}$, which range from 2.230 to $2.299 \AA$ (mean $2.258 \AA$), are close to those of ZnCl_{4} tetrahedra in $\mathrm{Li}_{2} \mathrm{ZnCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Jacobi \& Brehler, 1969), $\mathrm{ZnCl}_{2} \cdot \frac{4}{3} \mathrm{H}_{2} \mathrm{O}$ (Follner \& Brehler, 1970), $\mathrm{Na}_{2} \mathrm{ZnCl}_{4}$ (van Loon \& Visser, 1977) and $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$ (Mikhail \& Peters, 1979). The present results show that the maximum differences of $\mathrm{Zn}-\mathrm{Cl}$ bond lengths in each ZnCl_{4}
tetrahedron are $0.035,0.038$ and $0.055 \AA$ (mean $0.043 \AA$), while corresponding values in the roomtemperature phase (Mikhail, 1980) range from 0.065 to $0.234 \AA$ (mean $0.159 \AA$). The maximum differences of the $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ bond angles in the respective ZnCl_{4} tetrahedra are $7.6,8.5$ and 8.7° in the present work, whereas they are $13 \cdot 1,4.7,11$ and 8.7° in the room-temperature phase (Mikhail, 1980). These facts show that, in the ferroelectric phase, ZnCl_{4} tetrahedra are less distorted than those in the room-temperature phase. The coordination numbers for the NH_{4}^{+}ions are $8[\mathrm{~N}(1), \mathrm{N}(2), \mathrm{N}(3)]$ and $5[\mathrm{~N}(4), \mathrm{N}(5), \mathrm{N}(6)]$, while they are $5,6,7$ and 8 in the room-temperature phase. These facts suggest that the arrangement of the ZnCl_{4} tetrahedra and NH_{4}^{+}ions in the ferroelectric phase is more regular than that in the room-temperature phase.

References

Belobrova, I. A., Moskalev, A. K., Bizukina, N. V., Milul, S. V. \& Aleksandrova, I. P. (1980). Solid State Commun. 33, 1101-1 102.
Follner, H. \& Brehler, B. (1970). Acta Cryst. B26, 1679-1682.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Itoh, K., Kataoka, T., Matsunaga, H. \& Nakamura, E. (1980). J. Phys. Soc. Jpn, 48, 1039-1040.

Jacobi, H. \& Brehler, B. (1969). Z. Kristallogr. 128, 390-405.
Loon, C. J. J. van \& Visser, D. (1977). Acta Cryst. B33, 188-190.
Matsunaga, H. \& Nakamura, E. (1981). J. Phys. Soc. Jpn, 50, 2789-2790.
Mikhail, I. (1980). Acta Cryst. B36, 2126-2128.
Mikhail, I. \& Peters, K. (1979). Acta Cryst. B35, 1200-1201.
UNICS (1967). Universal Crystallographic Computation Program System, edited by T. Sakurai. Tokyo: The Crystallographic Society of Japan.

Structure of Mercury(II) Iodide Nitrate

By Kenneth Persson and Bertil Holmberg

Physical Chemistry 1, Chemical Center, University of Lund, POB 704, S-220 07 Lund 7, Sweden
(Received 30 June 1981; accepted 23 September 1981)

Abstract

HgINO}_{3}, M_{r}=389.53\), orthorhombic, Pnma, $a=7.3850$ (26), $b=5.2567$ (29), $c=$ $12 \cdot 5277$ (69) $\AA, Z=4$, and $D_{x}=5.32 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was refined anisotropically from single-crystal diffractometer data to an R value of 0.044 for 610

0567-7408/82/030900-04\$01.00

independent reflexions. An $\left(\mathrm{HgI}^{+}\right)_{n}$ zigzag chain passes through the structure parallel to the a axis. In this chain, Hg is coordinated to two I atoms with an $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ angle of 158.66°, and the I atoms coordinate two Hg atoms with an $\mathrm{Hg}-\mathrm{I}-\mathrm{Hg}$ angle of 90.25°. The © 1982 International Union of Crystallography
NO_{3} groups are located with their oxygen planes perpendicular to the plane described by the $\left(\mathrm{HgI}^{+}\right)_{n}$ chain. The O atoms of the NO_{3} group are directed towards the Hg atoms. The structure of HgINO_{3} closely resembles that of $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$ if one of the Ag positions of the latter structure is considered as unoccupied.

Introduction. For some years structural investigations of compounds with the general formula $\mathrm{Ag}_{n} X_{x} A_{y}(n)$ x), with $X=\mathrm{Cl}, \mathrm{Br}$ or I and different anions A, have been carried out at this Institute. The investigation aims primarily to clarify the Ag coordination to the halide in solids of this kind, with soft metal ions like Ag^{+}in excess over halide.
Cationic complexes of $\mathrm{Hg}_{2} \mathrm{I}^{3+}$ [analogous to $\mathrm{Ag}_{n}{ }^{(n-1)+}$] have been detected in aqueous solutions of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ and KI by Raman spectroscopy (Clark \& Woodward, 1965) and current investigations at this Institute by Raman spectroscopy and liquid X-ray diffraction give evidence for similar species in dimethyl sulphoxide solutions. Hence, it was considered to be of great interest to extend the structural studies of Ag^{1} compounds to analogous compounds with metal ions of soft character, like binary compounds formed in the system $\mathrm{HgI}_{2}-\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$. The title compound has already been described as $\mathrm{HgI}_{2} . \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ in the early literature (Kraut, 1885). A preliminary structure report has been given (Persson, 1980).
Single crystals of HgINO_{3} were prepared by the following procedure. KI was added to an aqueous solution of $4 \mathrm{M} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ and $\sim 3 \mathrm{M} \mathrm{HNO}_{3}$ at about 330 K until no more of the initially formed red HgI_{2} was dissolved ($c_{\mathrm{KI}} \simeq 0.9 \mathrm{M}$). After filtration at this temperature thin, colourless needle-shaped single crystals were obtained on cooling.
HgINO_{3} is stable for at least a few days in dry air at room temperature. The surface of the crystals becomes light yellow after about one week in air, probably due to the formation of yellow HgI_{2}. This surface reaction had no serious effect on the X-ray intensities collected (see below). Table 1 gives information concerning the collection of intensities, and the refinement. The method employed for data collection has been described (Elding, 1976). Weissenberg photographs revealed the Laue class mmm and the systematic absences $0 k l: k+l=2 n+1$, and $h k 0: h=2 n+1$.
By comparison with the $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$ structure (Persson \& Holmberg, 1977) we observed a conformity of both space group (Pnma) and cell dimensions (an elongation of a of about $0.5 \AA$ for HgINO_{3} only) for the two compounds. This observation suggested a similarity of the structures in spite of the different metal-to-halide ratios. The Weissenberg photographs of the two compounds also showed intensity patterns which had some features in common.

Table 1. Crystal data, and details of the collection and reduction of the intensity data, and of the least-squares
refinement

Crystal size (mm)	$0.081 \times 0.469 \times 0.056$
Radiation (Nb filter)	Mo Ka ($\lambda=0.71073 \mathrm{~A})$
Take-off angle (${ }^{\circ}$)	3
$\Delta \omega\left(^{\circ}\right)(\omega-2 \theta$ scan)	$0.90+0.50 \tan \theta$
$\Delta \theta\left({ }^{\circ}\right)$	3-30
Minimum number of counts in a scan	3000
Maximum recording time (s)	180
$\mu(\mathrm{Mo} \mathrm{Ka})\left(\mathrm{mm}^{-1}\right)$	37.81
Range of transmission factor	0.113-0.227
Number of measured reflexions	2395
Number of measured independent reflexions	635
Number of reflexions given zero weight	25
Number of independent reflexions used in the final refinement, m	610
Number of parameters refined, n	34
$R=\sum\| \| F_{0}\left\|-\left\|F_{c}\right\|\right\| / \sum\left\|F_{o}\right\|$	0.044
$R_{w}=\left[\sum w\left(\left\|F_{0}{ }^{\text {b }}-\left\|F_{c}\right\|\right)^{2} / \sum w \mid F_{o}{ }^{2}\right]^{1 / 2}\right.$	0.041
$\left.S=\left[<\dot{w}\left(\mid F_{0}\right)^{\circ}-\left\|F_{c}\right\|\right)^{2} /(m-n)\right]^{1 / 2}$	1.28
a (weighting function)	0.022

The intensity data were collected on a single-crystal diffractometer (CAD-4). Dependent reflexions were recorded ($\frac{3}{8}$ of the sphere of reflexion) and after absorption correction the data were reduced to an independent data set by using the program SORTA, which sorts and averages equivalent reflexions. The cell dimensions were improved by least-squares refinement of 46 reflexions (Danielsson, Grenthe \& Oskarsson, 1976). The wavelength used for the determination of the cell dimensions was $0.70930 \AA$ (Mo $K \alpha_{1}$).

Three standard reflexions (212, 214, and 411), checked every second hour, showed a small decrease in intensity in the middle of the collection period, probably caused by a small continuous change of the centring of the crystal. After recentring they showed random fluctuations. The middle part of the intensity data were thus scaled with the expression $Y=1.0-(0.72 \times$ $\left.10^{-3}\right) X$, where X is the total time in hours that the crystal had been exposed to X radiation. The absorption correction was performed according to Busing \& Levy (1957, 1967) using the numerical-integration method of Gauss. The morphology of the crystal was described by eight planes.
The positions of the Hg and I atoms were found using the MULTAN 78 system of computer programs (Germain, Main \& Woolfson, 1971). The O and N atoms were revealed in a subsequent difference synthesis. Full-matrix least-squares refinement, minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, was performed with weights $w=1 /\left[\sigma_{c}^{2} /\left(4 F_{o}^{2}\right)+\left(a F_{o}\right)^{2}\right]$. The value of a was chosen to make the average values $\left\langle w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right\rangle$ almost equal in different $\left|F_{o}\right|$ and $\sin \theta$ intervals. Three scale factors, and positional and anisotropic thermal parameters were refined (Table 1).

Table 2. Positional and equivalent isotropic thermal parameters with estimated standard deviations

	$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{l j} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.			
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Hg	0.09719 (7)	$\frac{3}{4}$	0.22176 (5)	4.00 (2)
I	0.39333 (11)	$\frac{3}{4}$	$0 \cdot 10309$ (7)	$4 \cdot 22$ (2)
N	0.4315 (13)	$\frac{1}{4}$	$0 \cdot 3583$ (9)	$3 \cdot 2$ (3)
$\mathrm{O}(1)$	0.0691 (14)	$\frac{1}{4}$	0.2022 (10)	$4 \cdot 8$ (3)
$\mathrm{O}(2)$	$0 \cdot 3662$ (9)	0.4583 (14)	$0 \cdot 3875$ (6)	$4 \cdot 5$ (2)

Scattering factors were taken from International Tables for X-ray Crystallography (1974). The final refinement also included correction for anomalous dispersion by Hg and I. Only two reflexions, 020 and 011 , seemed to be affected by extinction and were given zero weight in the final refinement. The dependent data set gave an R value of 0.064 (1434 reflexions) and the independent set a reduction to 0.044 (610 reflexions) which also reduced the standard deviations by a factor of 2 .
In the last cycle the shifts in the parameters were less than 0.5% of the estimated standard deviations and the refinement was considered complete. A final difference synthesis showed peaks of height $2.5 \mathrm{e} \AA^{-3}$ or less in the vicinity of the heavy atoms, but apart from this it was featureless.
A normal probability plot of $\delta R(i)=\left|\left|F_{o}(i)\right|-\right.$ $\left.\left|F_{c}(i)\right|\right] / \sigma\left|F_{o}(i)\right|$ versus the values expected for a normal distribution (Abrahams \& Keve, 1971) was made. The slope and intercept of the least-squares line, fitted to all data, are 1.28 and 0.12 respectively. The positive intercept may indicate a systematic overestimation of $\left|F_{o}\right|-\left|F_{c}\right|$ (Persson \& Holmberg, 1977). If this systematic error in $\left|F_{o}\right|$ is neglected, the value of the slope indicates that $\sigma\left(\left|F_{o}\right|\right)$ is underestimated by about 30%. It is still in agreement with the value of the estimated standard deviation of an observation of unit weight ($S=1 \cdot 28$, Table 1). All computations were made on the Univac 1100/80 computer in Lund. Final positional and isotropic thermal parameters are given in Table 2.*

Discussion. A stereoview of the unit cell is given in Fig. 1. Selected interatomic distances and angles are listed in Table 3. $\mathrm{O}(2)$ is the only atom not located in the mirror planes at $y=\frac{1}{4}$ and $y=\frac{3}{4}$. The structure comprises infinite $-\mathrm{I}-\mathrm{Hg}-\mathrm{I}-\mathrm{Hg}-\mathrm{I}-$ zigzag chains along a. Coplanar pairs of chains are located in the two

[^0]

Fig. 1. A stereoscopic pair of drawings showing the contents of the unit cell. Large circles are I and small ones are Hg. Figs. 1 and 2 have been drawn by the program ORTEP II (Johnson, 1971).

Table 3. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations

Symmetry code

(i)	$x, \quad y$,
(iii)	$x, \quad y$,
(v)	$x, 1+y$,
(vii)	$x, \frac{3}{2}-y$,
$\mathrm{Hg}-\mathrm{I}$	2.644 (1)
$\mathrm{Hg}-\mathrm{I}^{\text {i }}$	2.661 (1)
$\mathrm{Hg}-\mathrm{Hg}^{\text {i }}$	3.760 (1)
$\mathrm{N}-\mathrm{O}\left(1^{1}\right)$	1.267 (15)
$\mathrm{N}-\mathrm{O}(2)$	1.251 (9)
$\mathrm{N}-\mathrm{O}\left(2^{\text {II }}\right.$)	1.251 (9)
$\mathrm{I}-\mathrm{I}^{\text {lv }}$	4.008 (2)
I-I'	$5 \cdot 214$ (2)
$\mathrm{I}-\mathrm{I}^{\text {v }}$	$5 \cdot 257$ (3)

(ii)	$x, \frac{1}{2}-y$,	z
(iv)	$1-x, 1-y,-z$	
(vi)	$-\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$	
(viii)	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$	

$\mathrm{Hg}-\mathrm{I}-\mathrm{Hg}^{i}$	$90 \cdot 25(4)$
$\mathrm{I}-\mathrm{Hg}-\mathrm{I}^{\mathrm{III}}$	$158.66(4)$
$\mathrm{O}\left(1^{\mathrm{l}}\right)-\mathrm{N}-\mathrm{O}(2)$	$118.9(5)$
$\mathrm{O}\left(1^{i}\right)-\mathrm{N}-\mathrm{O}\left(2^{\text {iI }}\right)$	$118.9(5)$
$\mathrm{O}(2)-\mathrm{N}-\mathrm{O}\left(2^{\text {il }}\right)$	$122 \cdot 2(1 \cdot 0)$

mirror planes. The NO_{3} group is oriented with the O atoms towards the Hg atoms and the oxygen plane is perpendicular to the plane of the zigzag chain and the bond sequence $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ (Fig. 1). The Hg and I positions are almost identical to the $\mathrm{Ag}(2)$ and Br positions in the $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$ structure (Persson \& Holmberg, 1977). The N and $\mathrm{O}(2)$ positions are also almost equal though the NO_{3} group as a whole has changed the direction of its oxygen plane. $O(1)$ is directed towards Hg^{1} instead of Hg as would follow from a straightforward comparison with $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$.

The $\mathrm{Hg}-\mathrm{I}$ distances are 2.64 and $2.66 \AA$, slightly longer than those previously found for predominantly two-coordinated Hg in yellow HgI_{2} (Jeffrey \& Vlasse, 1967) and in $\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{TiF}_{6}$ (Köhler, Breitinger \& Thiele, 1974). The latter compound is built up by $\left(\mathrm{HgI}^{+}\right)_{n}$ chains analogous to those in HgINO_{3}. The bond angle $\mathrm{Hg}-\mathrm{I}-\mathrm{Hg}$ is 90.25° in HgINO_{3} which compares well with the 89.4 and 97.2° in $\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{TiF}_{6}$, whereas the I-Hg-I segment of the $\left(\mathrm{HgI}^{+}\right)_{n}$ chain is considerably less linear in HgINO_{3}. The angle is 158.7°, which is close to the value found for the HgI_{2} complex in dimethyl sulphoxide, 159 (2) ${ }^{\circ}$ (Sandström, 1978a). In yellow HgI_{2} as well as $\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{TiF}_{6}$ the corresponding angle is significantly larger: 178.3 and 175.8°, respectively.

Fig. 2. The environment of the Hg atom. The superscripts are according to Table 3. Distances in \AA.

The shortest I-I distance, $4.008 \AA$, between different layers containing the $\left(\mathrm{HgI}^{+}\right)_{n}$ chain and the NO_{3} groups, is in very good agreement with the shortest I-I distance in yellow HgI_{2} (4.017 \AA; Jeffrey \& Vlasse, 1967).

Fig. 2 describes the environment of the Hg atom. Six O atoms form an almost planar ring around Hg , perpendicular to the $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ plane. There are four O atoms at distances of 2.648 (2) $\left[\mathrm{O}(1)\right.$ and $\left.\mathrm{O}\left(1^{\text {vili }}\right)\right]$ and $2.671(7) \AA\left[\mathrm{O}\left(2^{\mathrm{vi}}\right)\right.$ and $\left.\mathrm{O}\left(2^{\text {iiI }}\right)\right]$ from Hg , and two O atoms at considerably longer distances of 3.257 (7) \AA $\left[O(2)\right.$ and $\left.O\left(2^{\text {vili }}\right)\right]$. The largest deviation of an O atom from the least-squares O_{6} plane is 0.152 (9) \AA, and Hg is $0.1157(5) \AA$ outside this plane. The configuration around Hg can thus be described as $2+6$ [cf. the $\mathrm{Ag}(2)$ environment in $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$]. This assignment is based on purely geometrical considerations, however. The Hg distance to $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\text {vil }}\right), 3.26 \AA$, clearly exceeds the sum of the 12 -coordinate Hg metallic radius and the van der Waals radius of $\mathrm{O}(2.91 \AA)$, which indicates that $\mathrm{O}(1), \mathrm{O}\left(1^{\text {vili }}\right), \mathrm{O}\left(2^{\text {vi }}\right)$ and $\mathrm{O}\left(2^{\text {iiI }}\right)$ are the only O atoms that may interact more specifically with Hg (cf. Fig. 2). Even these four $\mathrm{Hg}-\mathrm{O}$ distances are comparably long (cf. the shortest $\mathrm{Hg}-\mathrm{O}$ bonds in orthorhombic $\mathrm{HgO}: 2.04$ and $2.07 \AA$; Aurivillius, 1964). They fall in the range of long distances found in Hg compounds with two short and various longer $\mathrm{Hg}-\mathrm{O}$ bonds (Sandström, 1978b). Even though the interaction between Hg and these O atoms may be weak, it seems reasonable to correlate the large deviation of the $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ angle from 180° with the
difference in influence exerted on Hg by these four O atoms on the one hand, and $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\text {vil }}\right)$ on the other.
$\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{TiF}_{6}$ and HgINO_{3} are the only known $\mathrm{Hg}^{1 \mathrm{I}}$ compounds with a bridging single halide and Hg in diagonal coordination, forming endless $\left(\mathrm{HgI}^{+}\right)_{n}$ chains. The structural similarities between HgINO_{3} and $\mathrm{Ag}_{2} \mathrm{BrNO}_{3}$ have been pointed out here, but it should be noted that no such analogy can be found with the chemically closely related compound $\mathrm{Ag}_{2} \mathrm{INO}_{3}$ (Persson, 1979).

The help given by Dr Christer Svensson during the data collection is gratefully acknowledged. This work is part of a project supported by the Swedish Natural Science Research Council.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Aurivillius, K. (1964). Acta Chem. Scand. 18, 1305-1306.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Busing, W. R. \& Levy, H. A. (1967). Acta Cryst. 22, 457-464.
Clark, J. H. R. \& Woodward, L. A. (1965). Trans. Faraday Soc. 61, 207-211.
Danielsson, S., Grenthe, I. \& Oskarsson, £. (1976). J. Appl. Cryst. 9, 14-17.
Elding, I. (1976). Acta Chem. Scand. Ser. A, 30, 649-656.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jeffrey, G. A. \& Vlasse, M. (1967). Inorg. Chem. 6, 396-399.
Johnson, C. K. (1971). ORTEP II. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
Köhler, K., Breitinger, D. \& Thiele, G. (1974). Angew. Chem. 13, 821-822.
Kraut, K. (1885). Ber. Dtsch. Chem. Ges. 18, 3461-3462.
Persson, K. (1979). Acta Cryst. B35, 302-306.
Persson, K. (1980). Abstract 1-D-42. 6th Eur. Crystallogr. Meet., Barcelona.
Persson, K. \& Holmberg, B. (1977). Acta Cryst. B33, 3768-3772.
Sandström, M. (1978a). Acta Chem. Scand. Ser. A, 32, 627-641.
SAndStröm, M. (1978b). PhD Thesis, KTH, Stockholm.

[^0]: * Lists of structure factors, anisotropic thermal parameters and root-mean-square components of the thermal displacement along the ellipsoid axes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36426 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

